
Fundamental Journal of Mathematics and Mathematical Sciences 

p-ISSN: 2395-7573; e-ISSN: 2395-7581 

Volume 19, Issue 2, 2025, Pages 155-166 

This paper is available online at http://www.frdint.com/ 

Published online July 22, 2025 

:esphras and Keywords Korteweg-de Varies equation, Taylor’s theorem, Adomian 

polynomials, Adomian decomposition method. 

2020 Mathematics Subject Classification: 65M12, 41A58, 41A10, 35A20, 35A35. 

*Corresponding author 

Received July 24, 2024; Accepted June 1, 2025 

 © 2025 Fundamental Research and Development International 

ANALYTICAL SOLITONS TO THE GENERALIZED 

KdV EQUATION BY ADOMIAN DECOMPOSITION 

METHOD 

V. B. EDET and E. U. AGOM* 

Department of Mathematics 

University of Calabar 

Calabar 

Nigeria 

e-mail: agomeunan@gmail.com 

Abstract 

In this paper, enhanced Adomian decomposition method (ADM) is 

applied to study the generalized Korteweg-de Varies (gKdV) equation. 

We express, explicitly, the Adomian polynomials (APs) for the advection 

nonlinearity term in various orders, starting from the lowest-order 

quadratic term to the nonic order nonlinearity term. Then, the initial 

condition is expressed as a Taylor series and each term is distributed to 

terms in the integral equation that constitute the solitons solution in 

series form. Resulting to exact analytically-continuous solitons akin to 

Multivariate Taylor Theorem (MTT) applied to the exact solution, which 

is against the existing discrete ones currently available in literature. 

Our results from specific illustration were further depicted in 3D plots 

from Maple 2021 computer algebra system. 
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1. Introduction 

The gKdV equation in the x-direction is a third order nonlinear 

hyperbolic partial differential equation with an introduced initial 

condition of the form 

 ( ) ( )xxuuuuu xxxx
p

t φ==β+α+ 0,,0  (1) 

which has broad ranging applications with a complete history in [15]. The 

equation is a universal mathematical model that describes weakly 

nonlinear long wave propagation in dispersive media and it arises in 

many field of science. A comprehensive list of the applications is 

contained in [10-13] and the literatures therein. The Solitons or Solitary 

waves, as described by [11], ( )txuu ,=  is the wave profile that describes 

the elongation of the wave at a place in the space coordinate x  in time, ,t  

,+∈ Zp  α  and β  are determined by the wave medium properties which 

could either be constants or function of ., tx  Nowadays, as can be seen in 

[1-16], α  and β  are considered as constants. From the earlier conceived 

KdV equation, now associated with variable change, coupled with some 

casting, has culminated into the canonical form 

 06 =++ xxxxt uuuu  (2) 

as contained in [11]. Which is also of quadratic nonlinearity and here 6 is 

a scaling factor making the solitons easier to describe. 

Several approaches in literature have been developed while studying 

and presenting the KdV equation. Pioneer studies on analytical result 

were carried out by [14]. They developed the inverse scattering transform 

method to solve the KdV equation. [16] presented a numerical solution 

using B-Spline finite element method approach, [1] presented the 

polynomial solutions in terms of Jacobi’s elliptic function and also utilises 

the extended expansion method. [2] presented a derivation of multiple 

scale expansion and multiple level approximation method, [25] studied 
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the KdV equation using the exponential-expansion method and [3] 

studied the KdV equation with negative order hierarchy that generates 

nonlinear integrable equations. [4] studied the ( )-12 + dimensional class 

of this equation by reducing the governing equation to simpler ordinary 

differential equations using wave transformation in association with 

Jacobi’s elliptic function. [5] studied the negative order class of this 

equation in ( )-13 + dimension, which was also followed suit by [6] and 

[22] studied the linearised version with reduced differential transform 

method using time dependent boundary conditions. [7] presented an 

extended study of Homotopy perturbation method to investigate the 

equation numerically while [8] presented the semi-implicit pseudo-

spectral method and [9] presented the Homotopy analysis method to 

investigate the KdV equation numerically. [23] studied the KdV equation 

with quadratic nonlinearity and fifth-order in the space variable using 

the unified F-expansion method, and [24] presented an analysis of the 

approximate symmetries to the perturbed KdV equation with partial 

Lagrange method. 

Studies on the KdV equation are still ongoing and more results are 

still evolving. So far, emphasis has mostly been focused on the quadratic 

nonlinearity term class of the equation with a hand full on the cubic and 

quartic nonlinearities. In this paper, we analyse the advection 

nonlinearity term with quadratic, cubic, quartic, ..., nonic nonlinearity 

terms using the APs in ADM. Then, decompose the given initial condition 

using the single variable Taylor’s theorem, and apply the enhanced ADM 

on higher order nonlinearity cases ( )8and7,6=p  to provide 

continuous analytical wave profile as against the discrete cases currently 

available in literatures. 

2. Theory of ADM on the gKdV Equation and its APs 

2.1. ADM on the gKdV equation 

The ADM in [17] as studied and presented in [19], [20] and [21] 



V. B. EDET and E. U. AGOM 

 

158 

expresses the KdV equation (1) using the operator tL  and assumes 
1−

tL  

exists. Then decomposes the wave profile ( )txu ,  as ( )∑
∞

=0
,

n n txu  and 

the advection nonlinearity term x
puuα  as ( )txNu ,  with ( ) =txNu ,  

∑
∞

=0
,

n nA  where, in this study, ( ),⋅
∂

∂
=

t
Lt  ( )∫

∞− ⋅=
0

1
dtLt  and nA  

represents the APs contained in [17, 19, 20, 21] and redefined in [18] as 

 ( ) ( )

00

000 ,
1

...,,,

=λ

∞

=













λ

λ
= ∑

i

i
i

n

n

n txuN
d

d

n
uuuA  (3) 

( ).0 +∈ ZUn  On the whole, all the aforementioned dictates of the 

method optimally express equation (1) as 

 ( ) ( ) ( )( ) ( )( )∑
∞

=

−−
β−α−φ=

0

11
,,,,

n

xxxttn txuLtxNuLxtxu  (4) 

where, unlike the usual application of ADM, we write 

( ) ( )∑
∞

=

φ=φ

0n

n xx  

which is a Taylor’s series expansion of ( ).xφ  Consequently, we obtain 

from equation (4) the following integral equations for each components of 

the Solitary wave. 

( ),00 xu φ=  

( ) ( )[ ],0
1

0
3

3
1

11 uALu
x

Lxu ntt α−



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
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∂
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β−φ= −−
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( ) ( )[ ],,, 210
1
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3

3
1

33 uuuALu
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
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( ) ( )[ ]....,,,, 1210
1

1
3

3
1
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


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


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β−φ= kntktkk uuuuALu

x
Lxu  

And, the wave profile is obtained as 

 ( ) ( )∑
=

∞→
=

k

n

n
k

txutxu

0

.,lim,  (5) 

As a result of the infinite nature of equation (5), k  is an integer of choice 

for the reseacher(s). The higher the value of k  the more accurate the 

ADM solution. Some finite APs of quadratic, cubic, quartic, ..., nonic 

orders of ( )txNu ,  are given explicitly in Subsection 2.2. 

2.2. Some APs of the advection nonlinearity term 

In this section, we give some APs for the advection nonlinearity term. 

(i) Quadratic nonlinearity term ( )1=p  

,000 u
x
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x
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(ii) Cubic nonlinearity term ( )2=p  
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(iii) Quartic nonlinearity term ( )3=p  
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(iv) Quintic nonlinearity term ( )4=p  
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(v) Sixtic nonlinearity term ( )5=p  
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(vi) Septic nonlinearity term ( )6=p  
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.1566 0
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(vii) Octic nonlinearity term ( )7=p  
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(viii) Nonic nonlinearity term ( )8=p  
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2.3. MTT for the wave profile 

The wave profile ( )txu ,  consists of the space variable x  and the time 

variable ,t  by implication, has a multivariate Taylor’s series 

representation. See [19, 21] and the literatures therein. First, we assume 

that ( )txu ,  is a smooth function in a set, say ,�  with ( ) ., 00 �∈tx  

Hence, we can write the wave profile as 

 ( ) ( )

( )

,,
!

1
,

00 ,0 txm

n

txu
t

t
x

x
n

txu ∑
∞

=

















∂

∂
∆+

∂

∂
∆=  (6) 

where 0xxx −=∆  and .0ttt −=∆  

Theorem 1 (Approximating Polynomials of the Solitons). Every 
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smooth function ( )txu ,  is a sum of approximating polynomials with given 

( )00 , tx  and residual function. 

Proof. It follows from equation (6) that 

( ) ( ) ( ),,,, 1 txRtxPtxu mm ++=  

where ( )txPm ,  is the approximating mth-degree Taylor polynomials of 

( )txu ,  and ( )txRm ,1+  is the residual function which is much smaller for 

higher values of .m  And, ( ) 0,1 →+ txRm  as ( ) ( )00 ,, txtx →  making 

 ( ) ( ).,, txPtxu m≈  � 

3. Illustrations 

In this section, we consider the gKdV equation as shown in equation 

(1) with 1=β=α  and ( ) [ ( )]pxxAx
1

0
2sech −κ=φ  that results to the 

exact solution ( ) [ ( )]pxctxAtxu
1

0
2sech, −−κ=  as contained in [16], 

where ,1≥p  
( )( )

.
4

,
212

2

2
2

2 mm

pp
A

κ
κ

++
=  ,κ  m  and 0x  are constants. 

We consider three cases 

Case 1. Septic nonlinearity 

Consider equation (1) with ,6=p  1==κ m  and .00 =x  On 

application of equations (3), (4) and (5) and item (vi) in Subsection 2.2, we 

have 

( )∑
∞

=

+−+−=φ

0

642 ...
6480

83

24

1

6

1

n

n AxAxAxAx  

which is the multivariate Taylor series of the exact solitary wave where 

.112
6=A   More results are shown in Figure 1. 
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Case 2. Octic nonlinearity 

Consider equation (1) with ,7=p  1==κ m  and .00 =x  Similarly, 

on application of equations (3), (4) and (5) and item (vii) in Subsection 2.2, 

we get 

( ) ...
15435

158

147

5

7

1 642

0

+−+−=φ∑
∞

=

AxAxAxAxn

n

 

which is also the multivariate Taylor series of the exact soliton. Where 

.144
7=A  More results are shown in Figure 2. 

Case 3. Nonic nonlinearity 

Consider equation (1) with ,8=p  1==κ m  and .00 =x  Also, on 

application of equations (3), (4) and (5) and item (viii) in Subsection 2.2, 

we obtained 

( ) ...
46080

391

384

11

8

1 642

0

+−+−=φ∑
∞

=

AxAxAxAxn

n

 

which is the same as the multivariate Taylor series of the exact wave 

profile. Where .180
8=A  More results are shown in Figure 3. 

 

Figure 1. Exact solution versus finite terms of ADM result. 
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Figure 2. Exact solution versus finite terms of ADM result. 

 

Figure 3. Exact solution versus finite terms of ADM result. 

4. Conclusion 

ADM has and will continue to be an important powerful tool for 

obtaining closed and numerical result to wide ranging classes of 

mathematical problems with a proven record of reliability. However, its 

successful deployment in nonlinear analysis is heavily dependent on ‘the 

right’ APs used. In this paper, we have demonstrated the use of enhanced 

ADM to attain continuous analytically exact results to the gKdV model in 

multivariate Taylor series form. This was made possible by the APs of the 

advection nonlinearity term we gave unambiguously from the least case 

scenerio, in this problem, to the nonic term. Then, expressed the initial 

conditions in the single variable Taylor series and applied each term in 
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the integral equation representing each component of the wave profile. 

And, we gave illustrations whose 3D plots appeared to be similar in the 

three cases we considered. 
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